| <問題> 平面上に何本かの直線があって、どの2本も平行ではなく、また、どの3本の直線も同一の点で交わらないように書くようにします。 この条件で4本の直線を書くと、右図のように、これらの直線で11個の平面に分けられます。 ここで問題です。 直線の数を6本に増やすと分けられる平面の数は何個になるでしょうか。  | 
		
		![]()  | 
	
<正解者一覧表>
| 正解者順位 | name | メール到着日時 | 備 考 | 
| 1 | 源内シンガポール さん | 2021/5/1 0:01 | 長崎県 | 
| 2 | algebra さん | 2021/5/1 0:02 | 神奈川県 | 
| 3 | マッキー27 さん | 2021/5/1 0:03 | 愛知県 | 
| 4 | 男はつらいよ さん | 2021/5/1 0:04 | 神奈川県 | 
| 5 | kou さん | 2021/5/1 0:05 | さいたま | 
| 6 | 乙女座 さん | 2021/5/1 0:08 | |
| 7 | 次郎長 さん | 2021/5/1 0:09 | 兵庫県 | 
| 8 | 鯨鯢(Keigei) さん | 2021/5/1 0:15 | |
| 9 | 量子論 さん | 2021/5/1 3:01 | 京都市中京区 | 
| 10 | 朝霞おじ さん | 2021/5/1 4:47 | 埼玉県 | 
| 11 | 巷の夢 さん | 2021/5/1 6:11 | 神奈川県在住 | 
| 12 | いぬたこ・うたねこ さん | 2021/5/1 6:31 | 関東 | 
| 13 | 花田勝幸 さん | 2021/5/1 6:36 | |
| 14 | 保和フランキー さん | 2021/5/1 6:55 | 愛知 | 
| 15 | syokyuhsya さん | 2021/5/1 9:30 | 千葉県 | 
| 16 | GUTENTAG さん | 2021/5/1 11:45 | 滋賀県 | 
| 17 | Mr.ダンディ さん | 2021/5/1 13:26 | 大阪府 | 
| 18 | いちもく さん | 2021/5/1 13:29 | 立川市 | 
| 19 | あめい さん | 2021/5/1 13:37 | 静岡県 | 
| 20 | 室内猫 さん | 2021/5/1 15:22 | 兵庫県 | 
| 21 | teki さん | 2021/5/1 19:09 | 大阪府 | 
| 22 | ゴンとも さん | 2021/5/1 20:08 | 豊川市 | 
| 23 | o さん | 2021/5/1 20:50 | |
| 24 | アルファ・ケンタウリ さん | 2021/5/1 23:10 | 京都府小学6年 | 
| 25 | NNR4 さん | 2021/5/2 10:04 | 兵庫県 | 
| 26 | nowhereman さん | 2021/5/2 10:05 | TOKYO | 
| 27 | 大阪市の中学受験プロ家庭教師 さん | 2021/5/2 23:30 | |
| 28 | くらげ さん | 2021/5/6 20:03 | |
| 29 | カルダノ さん | 2021/5/25 22:54 | 群馬 | 
答えは22個でした。